Advertisements
Advertisements
प्रश्न
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
उत्तर
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
LHS=`cos^2theta/((1-tan theta))+sin ^3theta/((sin theta - cos theta))`
=`cos^2theta/(1-sintheta/costheta)+sin^3 theta/((sin theta-costheta))`
=`cos^3 theta/((cos theta-sin theta))+ sin ^3 theta/((sintheta-cos theta))`
=`(cos^3theta-sin^3 theta)/((costheta - sin theta))`
=`((cos theta-sintheta)(cos^2 theta+cos theta sin +sin^2theta))/((costheta-sintheta))`
=`(sin^2theta + cos^2 theta + cos theta sin theta)`
=`(1+sin theta cos theta)`
=RHS
Hence, L.H.S = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
Write the value of cosec2 (90° − θ) − tan2 θ.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
tan θ × `sqrt(1 - sin^2 θ)` is equal to: