Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
पर्याय
True
False
उत्तर १
This statement is False.
Explanation:
It is given that, \[\sin\theta = x + \frac{1}{x}\]
\[\Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[\Rightarrow x + \frac{1}{x} \leq 1\]
\[\Rightarrow x^2 + 1 \leq x\]
\[\Rightarrow x^2 + 1 - x \leq 0\]
\[\text{Take }x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
Which is false, so x is not always a positive real number.
उत्तर २
This statement is False.
Explanation:
Given: a ≠ b and ab > 0
(Because Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)
⇒ AM > GM
If a and b be such numbers, then
AM = `(a + b)/2` and Gm = `sqrt(ab)`
By assuming that cos θ = `(a^2 + b^2)/(2ab)` is true statement.
Similarly, AM and GM of a2 and b2 will be,
AM = `(a^2 + b^2)/2` and GM = `sqrt(a^2 * b^2)`
So, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)` ...(By AM and GM property as mentioned earlier in the answer)
⇒ `(a^2 + b^2)/2 > ab`
⇒ `(a^2 + b^2)/(2ab) > 1`
⇒ cos θ > 1 ...(By our assumption)
But this not possible since, –1 ≤ cos θ ≤ 1
Thus, our assumption is wrong and `cos theta ≠ (a^2 + b^2)/(2ab)`
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Express the ratios cos A, tan A and sec A in terms of sin A.
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write the value of tan10° tan 20° tan 70° tan 80° .
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`