मराठी

Write True' Or False' and Justify Your Answer the Following : Cos θ = a 2 + B 2 2 a B Where a and B Are Two Distinct Numbers Such that Ab > 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर १

This statement is False.

Explanation:

It is given that, \[\sin\theta = x + \frac{1}{x}\]

\[\Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]

\[\Rightarrow x + \frac{1}{x} \leq 1\]

\[\Rightarrow x^2 + 1 \leq x\]

\[\Rightarrow x^2 + 1 - x \leq 0\]

\[\text{Take }x = 1, \]

\[ \Rightarrow 1 + 1 - 1 \leq 0\]

\[ \Rightarrow 1 \leq 0\]

Which is false, so x is not always a positive real number.

shaalaa.com

उत्तर २

This statement is False.

Explanation:

Given: a ≠ b and ab > 0

(Because Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)

⇒ AM > GM

If a and b be such numbers, then

AM = `(a + b)/2` and Gm = `sqrt(ab)`

By assuming that cos θ = `(a^2 + b^2)/(2ab)` is true statement.

Similarly, AM and GM of a2 and b2 will be,

AM = `(a^2 + b^2)/2` and GM = `sqrt(a^2 * b^2)`

So, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)`   ...(By AM and GM property as mentioned earlier in the answer)

⇒ `(a^2 + b^2)/2 > ab`

⇒ `(a^2 + b^2)/(2ab) > 1`

⇒ cos θ > 1  ...(By our assumption)

But this not possible since, –1 ≤ cos θ ≤ 1

Thus, our assumption is wrong and `cos theta ≠ (a^2 + b^2)/(2ab)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 24.2 | पृष्ठ ५६
एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.2 | Q 10 | पृष्ठ ९३

संबंधित प्रश्‍न

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


Express the ratios cos A, tan A and sec A in terms of sin A.


Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


(i)` (1-cos^2 theta )cosec^2theta = 1`


Write the value of tan10° tan 20° tan 70° tan 80° .


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×