Advertisements
Advertisements
Question
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Options
True
False
Solution 1
This statement is False.
Explanation:
It is given that, \[\sin\theta = x + \frac{1}{x}\]
\[\Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[\Rightarrow x + \frac{1}{x} \leq 1\]
\[\Rightarrow x^2 + 1 \leq x\]
\[\Rightarrow x^2 + 1 - x \leq 0\]
\[\text{Take }x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
Which is false, so x is not always a positive real number.
Solution 2
This statement is False.
Explanation:
Given: a ≠ b and ab > 0
(Because Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)
⇒ AM > GM
If a and b be such numbers, then
AM = `(a + b)/2` and Gm = `sqrt(ab)`
By assuming that cos θ = `(a^2 + b^2)/(2ab)` is true statement.
Similarly, AM and GM of a2 and b2 will be,
AM = `(a^2 + b^2)/2` and GM = `sqrt(a^2 * b^2)`
So, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)` ...(By AM and GM property as mentioned earlier in the answer)
⇒ `(a^2 + b^2)/2 > ab`
⇒ `(a^2 + b^2)/(2ab) > 1`
⇒ cos θ > 1 ...(By our assumption)
But this not possible since, –1 ≤ cos θ ≤ 1
Thus, our assumption is wrong and `cos theta ≠ (a^2 + b^2)/(2ab)`
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
sin2θ + sin2(90 – θ) = ?
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
sin(45° + θ) – cos(45° – θ) is equal to ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: