English

`(Sin Theta+1-cos Theta)/(Cos Theta-1+Sin Theta) = (1+ Sin Theta)/(Cos Theta)` - Mathematics

Advertisements
Advertisements

Question

`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`

Solution

LHS= `(sin theta+1cos theta)/(cos theta-1+sin theta) `

      =`((sin theta+1-cos theta)(sin theta+cos theta+1))/((cos theta -1 + sin theta)(sin theta + cos theta +1))`

      =`((sin theta + 1 )^2 - cos^2 theta)/((sin theta + cos theta )^2 -1^2)`

       =`(sin^2 theta +1+2 sin theta - cos^2 theta)/(sin^2 + cos^2 theta+2 sin theta  cos theta -1)`

      =`(sin^2 theta + sin^2 theta + cos^2 theta +2sin theta - cos^2 theta)/(2 sin theta   cos theta)`

      =`(2 sin ^2 theta + 2 sin theta)/(2 sin theta cos theta)`

      =`(2 sin theta (1+ sin theta))/(2 sin theta cos theta)`

      =`(1+sin theta)/cos theta`

      = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 27.2

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×