Advertisements
Advertisements
Question
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Solution
LHS= `(sin theta+1cos theta)/(cos theta-1+sin theta) `
=`((sin theta+1-cos theta)(sin theta+cos theta+1))/((cos theta -1 + sin theta)(sin theta + cos theta +1))`
=`((sin theta + 1 )^2 - cos^2 theta)/((sin theta + cos theta )^2 -1^2)`
=`(sin^2 theta +1+2 sin theta - cos^2 theta)/(sin^2 + cos^2 theta+2 sin theta cos theta -1)`
=`(sin^2 theta + sin^2 theta + cos^2 theta +2sin theta - cos^2 theta)/(2 sin theta cos theta)`
=`(2 sin ^2 theta + 2 sin theta)/(2 sin theta cos theta)`
=`(2 sin theta (1+ sin theta))/(2 sin theta cos theta)`
=`(1+sin theta)/cos theta`
= RHS
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ