Advertisements
Advertisements
Question
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Solution
LHS= `(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))`
=`(cos^2 theta/sin^2 theta(1/costheta-1))/((+ sin theta)) + (1/cos^2 theta(sin theta -1))/((1+ 1/cos theta))`
=`((cos^2 theta)/(sin^2 theta )((1- cos theta)/(cos theta)))/((1+sin theta))+ (((sin theta -1 ))/(cos ^2theta ))/(((cos theta + 1 )/(cos theta)))`
=`(cos^2 theta (1- cos theta))/(sin^2 theta cos theta (1+ sin theta))+ ((sin theta -1) cos theta)/((cos theta +1 ) cos^2 theta)`
=`(cos theta (1-cos theta))/((1- cos^2 theta)(1+ sin theta)) + ((sin theta -1)cos theta)/((costheta + 1 ) (1- sin^2 theta))`
=`(cos theta (1-cos theta))/((1- cos theta )( 1+ cos theta )(1+ sin theta)) + (-(1 sin theta ) cos theta)/((cos theta +1)(1-sin theta )(1+ sin theta))`
=`cos theta/((1+ cos theta )(1+ sin theta)) - cos theta/((cos theta +1)(1+ sin theta))`
= 𝜃
= RHS
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
`(1 + cot^2 theta ) sin^2 theta =1`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
cos 45° = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If 2sin2β − cos2β = 2, then β is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
If sin A = `1/2`, then the value of sec A is ______.