Advertisements
Advertisements
Question
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Solution
LHS = `1/(sinA + cosA) + 1/(sinA - cosA)`
= `(sinA - cosA + sinA + cosA)/(sin^2A - cos^2A)`
= `(2sinA)/(1 - cos^2A - cos^2A) = (2sinA)/(1 - 2cos^2A)`
APPEARS IN
RELATED QUESTIONS
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that sin4A – cos4A = 1 – 2cos2A