English

Write the Value of ` Sin^2 Theta Cos^2 Theta (1+ Tan^2 Theta ) (1+ Cot^2 Theta).` - Mathematics

Advertisements
Advertisements

Question

Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`

Solution

`sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta)`

     =`sin^2 theta cos^2 theta sec^2 theta cosec^2 theta `

     = ` sin^2 theta xx cos^2 xx 1/cos^2 theta xx1/sin^2 theta`

     = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 11

RELATED QUESTIONS

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×