Advertisements
Advertisements
Question
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Solution
`sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta)`
=`sin^2 theta cos^2 theta sec^2 theta cosec^2 theta `
= ` sin^2 theta xx cos^2 xx 1/cos^2 theta xx1/sin^2 theta`
= 1
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ