English

Prove the Following Trigonometric Identities. (Cot a + Tan B)/(Cot B + Tan A) = Cot a Tan B - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`

Solution

We have to prove `(cot A + tan B)/(cot B + tan A) = cot A tan B`

Now

`(cot A + tan B)/(cot B + tan A) = (cot A + 1/cot B)/(cot B + 1/cot A)`

`= ((cot A cot B + 1)/cot B)/((cot A cot B +1)/cot A)`

`= cot A/cot B`

`= cot A 1/cot B`

= cot A tan B

Hence proved 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 70 | Page 46

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If `sin theta = x , " write the value of cot "theta .`


What is the value of (1 − cos2 θ) cosec2 θ? 


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×