Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Solution
We have to prove `(cot A + tan B)/(cot B + tan A) = cot A tan B`
Now
`(cot A + tan B)/(cot B + tan A) = (cot A + 1/cot B)/(cot B + 1/cot A)`
`= ((cot A cot B + 1)/cot B)/((cot A cot B +1)/cot A)`
`= cot A/cot B`
`= cot A 1/cot B`
= cot A tan B
Hence proved
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `sin theta = x , " write the value of cot "theta .`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Eliminate θ if x = r cosθ and y = r sinθ.