English

Prove the Following Trigonometric Identities. (1 + Cos Theta + Sin Theta)/(1 + Cos Theta - Sin Theta) = (1 + Sin Theta)/Cos Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`

Solution

We have to prove the following identity

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`

Consider the LHS = `(1 + cos theta + sin theta)/(1 + cos theta - sin theta)`

`= ((1 + cos theta + sin theta)/(1 + cos theta - sin theta))((1 + cos theta + sin theta)/(1 + cos theta + sin theta))`

`= (1 + cos theta + sin theta)^2/((1 + cos theta)^2 sin^2 theta)`

`= (2 + 2(cos theta + sin theta + sin theta cos theta))/(2 cos^2 theta + 2 cos theta)`

`= (2(1 + cos theta)(1 + sin theta))/(2 cos theta (1 + cos theta))`

`= (1 + sin theta)/cos theta`

= RHS

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 47.1 | Page 45

RELATED QUESTIONS

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


`sin^2 theta + 1/((1+tan^2 theta))=1`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Write the value of tan1° tan 2°   ........ tan 89° .


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Choose the correct alternative:

cos θ. sec θ = ?


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×