Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Solution
We have to prove the following identity
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Consider the LHS = `(1 + cos theta + sin theta)/(1 + cos theta - sin theta)`
`= ((1 + cos theta + sin theta)/(1 + cos theta - sin theta))((1 + cos theta + sin theta)/(1 + cos theta + sin theta))`
`= (1 + cos theta + sin theta)^2/((1 + cos theta)^2 sin^2 theta)`
`= (2 + 2(cos theta + sin theta + sin theta cos theta))/(2 cos^2 theta + 2 cos theta)`
`= (2(1 + cos theta)(1 + sin theta))/(2 cos theta (1 + cos theta))`
`= (1 + sin theta)/cos theta`
= RHS
Hence proved
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
`sin^2 theta + 1/((1+tan^2 theta))=1`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Write the value of tan1° tan 2° ........ tan 89° .
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ