Advertisements
Advertisements
Question
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Solution
`(sec theta -1)/( sec theta +1)`
= `((1/cos theta - 1/1))/((1/ costheta + 1/1))`
=`(((1- cos theta)/cos theta))/(((1+ cos theta)/cos theta))`
=`(1- cos theta)/(1+ cos theta)`
=`((1/1-2/3))/((1/1+2/3)`
=`((1/3))/((5/3))`
=`1/5`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If `secθ = 25/7 ` then find tanθ.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.