Advertisements
Advertisements
Question
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Solution
We have ,
5 `tan theta = 4`
⇒ `tan theta = 4/5`
Now ,
`((cos theta - sintheta))/(( cos theta + sin theta))`
`=(((cos theta )/(cos theta)- (sin theta )/(cos theta)))/((cos theta/ cos theta+ sin theta/ cos theta)` (๐ท๐๐ฃ๐๐๐๐๐ ๐๐ข๐๐๐๐๐ก๐๐ ๐๐๐ ๐๐๐๐๐๐๐๐๐ก๐๐ ๐๐ฆ cos θ)
`=((1- tan theta))/((1+ tan theta))`
`= ((1/1-4/5))/((1/1+4/5))`
`= ((1/5))/((9/5))`
`= 1/9`
APPEARS IN
RELATED QUESTIONS
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A