English

If 5 `Tan Theta = 4,"Write the Value Of" ((Cos Theta - Sintheta))/(( Cos Theta + Sin Theta))` - Mathematics

Advertisements
Advertisements

Question

If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`

Solution

We have , 

 5 `tan theta = 4`

⇒ `tan theta = 4/5`

 Now ,

   `((cos theta - sintheta))/(( cos theta + sin theta))`

  `=(((cos theta )/(cos theta)- (sin theta )/(cos theta)))/((cos theta/ cos theta+ sin theta/ cos theta)`                             (๐ท๐‘–๐‘ฃ๐‘–๐‘‘๐‘–๐‘›๐‘” ๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘‘๐‘’๐‘›๐‘œ๐‘š๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘ฆ cos θ)

   `=((1- tan theta))/((1+ tan theta))`

   `= ((1/1-4/5))/((1/1+4/5))`

    `= ((1/5))/((9/5))`

    `= 1/9`

    

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 20

RELATED QUESTIONS

`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×