English

Prove the Following Trigonometric Identities. Cot^2 a Cosec^2b - Cot^2 B Cosec^2 a = Cot^2 a - Cot^2 B - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`

Solution

L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`

`= cot^2 A(1+ cot^2 B) - cot^2   B(1 + cot^2 A)`    (∵ `1 + cot^2 theta = cosec^2 theta`)

`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`

`= cot^2 A - cot^2 B`

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 72 | Page 46

RELATED QUESTIONS

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that sin4A – cos4A = 1 – 2cos2A


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×