Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Solution
L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`
`= cot^2 A(1+ cot^2 B) - cot^2 B(1 + cot^2 A)` (∵ `1 + cot^2 theta = cosec^2 theta`)
`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`
`= cot^2 A - cot^2 B`
Hence proved
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.