Advertisements
Advertisements
Question
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Solution
LHS = `sqrt((1+sin theta)/(1-sin theta))`
=`sqrt(((1+ sin theta))/(1- sin theta) xx ((1+sin theta))/(1+ sin theta))`
=` sqrt(((1+sin theta)^2)/(1-sin^2 theta))`
=`sqrt(((1+ sin theta)^2)/(cos^2 theta))`
=`(1+sin theta)/cos theta`
=`1/cos theta+ (sin theta)/(cos theta)`
= (sec 𝜃 + tan 𝜃)
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`