Advertisements
Advertisements
Question
(sec A + tan A) (1 − sin A) = ______.
Options
sec A
sin A
cosec A
cos A
Solution
(sec A + tan A) (1 − sin A) = cos A.
Explanation:
The given expression is `(sec "A"+tan "A") (1-sin "A")`.
Simplifying the given expression, we have
`(sec "A"+tan "A")(1-sin "A")`
= `(1/cos "A"+sin "A"/cos "A")(1-sin "A")`
= `(1+sin "A")/(cos"A")xx(1-sin "A")`
= `((1+sin "A")(1-sin "A"))/(cos "A")`
= `(1-sin^2 "A")/cos "A"`
= `cos^2 "A"/cos "A"`
= `cos "A"`
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of cos1° cos 2°........cos180° .
Simplify : 2 sin30 + 3 tan45.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B