Advertisements
Advertisements
Question
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Solution
Given:` secθ+tanθ=x`
We know that,
`Sec^2θ-tan^2θ=1`
Therefore,
`sec^2 θ-tan^2θ=1`
⇒` (Secθ+tan θ) (Secθ-tan θ)=1`
⇒` x (secθ-tan θ )=1`
⇒ `(sec θ-tan θ)=1/x`
Hence, `sec θ-tan θ=1/4`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.