English

If Sec θ + Tan θ = X, Write the Value of Sec θ − Tan θ in Terms of X. - Mathematics

Advertisements
Advertisements

Question

If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.

Answer in Brief

Solution

Given:` secθ+tanθ=x` 

We know that, 

`Sec^2θ-tan^2θ=1` 

Therefore, 

`sec^2 θ-tan^2θ=1` 

⇒` (Secθ+tan θ) (Secθ-tan θ)=1` 

⇒` x (secθ-tan θ )=1` 

⇒ `(sec θ-tan θ)=1/x` 

Hence, `sec θ-tan θ=1/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 5 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×