Advertisements
Advertisements
Question
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Solution
Given: `cosec θ-cot θ=α`
We know that, `cosec^2θ-cot^2θ=1`
Therefore,
`cosec^2 θ-cot^2θ=1`
⇒ `(cosec θ+cot θ) (cosec θ-cot θ)=1`
⇒ `(cosecθ+cot θ )α=1`
⇒ `(cosec θ+cot θ)=1/α`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of tan10° tan 20° tan 70° tan 80° .
Write the value of cos1° cos 2°........cos180° .
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?