Advertisements
Advertisements
Question
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Solution
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
L.H.S = `(cot theta - cos theta)/(cot theta + cos theta)`
= `cos theta/sin theta - cos theta ÷ cos theta/sin theta + cos theta`
= `(cos theta - sin theta cos theta)/sin theta ÷ (cos theta + sin theta cos theta)/sin theta`
= `(cos theta(1 - sin theta))/sin theta ÷ (cos theta(1 + sin theta))/sin theta`
= `(cos theta(1 - sin theta))/sin theta xx sin theta/(cos theta(1 + sin theta))`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = `("cosec" - 1)/("cosec"+1)`
= `1/sin theta - 1 ÷ 1/sin theta+ 1`
= `(1 - sin theta)/sin theta ÷ (1 + sin theta)/sin theta`
= `(1 - sin theta)/sin theta xx sin theta/(1 + sin theta)`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = L.H.S ⇒ `(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.