Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
उत्तर
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
L.H.S = `(cot theta - cos theta)/(cot theta + cos theta)`
= `cos theta/sin theta - cos theta ÷ cos theta/sin theta + cos theta`
= `(cos theta - sin theta cos theta)/sin theta ÷ (cos theta + sin theta cos theta)/sin theta`
= `(cos theta(1 - sin theta))/sin theta ÷ (cos theta(1 + sin theta))/sin theta`
= `(cos theta(1 - sin theta))/sin theta xx sin theta/(cos theta(1 + sin theta))`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = `("cosec" - 1)/("cosec"+1)`
= `1/sin theta - 1 ÷ 1/sin theta+ 1`
= `(1 - sin theta)/sin theta ÷ (1 + sin theta)/sin theta`
= `(1 - sin theta)/sin theta xx sin theta/(1 + sin theta)`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = L.H.S ⇒ `(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If 1 – cos2θ = `1/4`, then θ = ?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Show that tan4θ + tan2θ = sec4θ – sec2θ.