Advertisements
Advertisements
प्रश्न
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
उत्तर
LHS = `((sin^2 A + ( 1 + cos A)^2)/((1 + cos A)sin A))`
= `(sin^2 A + 1 + cos^2 A + 2 cos A)/((1 + cos A) sin A)`
= `(1 + 1 + 2 cos A)/((1 + cos A) sin A)`
= `(2(1 + cos A))/((1 + cos A)sin A)`
= 2 cosec A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1