Advertisements
Advertisements
प्रश्न
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
उत्तर
LHS = `((sin^2 A + ( 1 + cos A)^2)/((1 + cos A)sin A))`
= `(sin^2 A + 1 + cos^2 A + 2 cos A)/((1 + cos A) sin A)`
= `(1 + 1 + 2 cos A)/((1 + cos A) sin A)`
= `(2(1 + cos A))/((1 + cos A)sin A)`
= 2 cosec A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin A = `1/2`, then the value of sec A is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
(1 + sin A)(1 – sin A) is equal to ______.