Advertisements
Advertisements
प्रश्न
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
उत्तर
L.H.S. = sin4θ - cos4θ
L.H.S. = (sin2θ)2 - (cos2θ)2
L.H.S. = (sin2θ - cos2θ)(sin2θ + cos2θ)
L.H.S. = (sin2θ - cos2θ) x 1
L.H.S. = sin2θ - cos2θ
L.H.S. = R.H.S.
L.H.S.= sin2θ - (1 - sin2θ)
L.H.S. = sin2θ - 1 + sin2θ
L.H.S. = 2sin2θ - 1
L.H.S. = R.H.S
L.H.S. = 2(1 - cos2θ) - 1
L.H.S. = 2 - 2cos2θ - 1
L.H.S. = 1 - 2cos2θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
What is the value of 9cot2 θ − 9cosec2 θ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`