Advertisements
Advertisements
प्रश्न
(secA + tanA) (1 − sinA) = ______.
विकल्प
sec A
sin A
cosec A
cos A
उत्तर
(secA + tanA) (1 − sinA) = cos A.
Explanation:
(secA + tanA) (1 − sinA)
= `(1/cosA+sinA/cosA)(1-sinA)`
= `((1+sinA)/cosA)(1-sinA)`
= `(1-sin^2A)/(cosA)`
= `(cos^2A)/cos A`
= cosA
Hence, alternative cosA is correct.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(1 + cot^2 theta ) sin^2 theta =1`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of tan10° tan 20° tan 70° tan 80° .
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
The value of sin2 29° + sin2 61° is
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that:
tan (55° + x) = cot (35° – x)
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.