Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
उत्तर
LHS = `sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1))`
= `(sqrt( secθ - 1) sqrt( secθ - 1) + sqrt( secθ + 1)sqrt( secθ + 1))/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `((sqrt( secθ - 1))^2 + (sqrt( secθ + 1))^2)/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `(secθ - 1 + secθ + 1)/(sqrt(sec^2 - 1))`
= `(2secθ)/sqrt(tan^2θ)`
= `(2secθ)/(tanθ)`
= `(2 1/cosθ)/(sinθ/cosθ)`
= `(2 1/sinθ)`
= 2 cosecθ.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that cot2θ × sec2θ = cot2θ + 1