Advertisements
Advertisements
प्रश्न
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
उत्तर
LHS = `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ))`
= `(sin θ. sin θ cos θ)/(cos θ) + (cos θ . cos θ sin θ)/(sin θ)`
= sin2 θ + cos2 θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If cosθ = `5/13`, then find sinθ.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.