Advertisements
Advertisements
प्रश्न
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
उत्तर
LHS = `(sin^2θ)/(cosθ) + cosθ = secθ`
= `(sin^2θ + cos^2θ)/(cosθ)`
= `1/(cosθ)` ...(sin2θ + cos2θ = 1)
= secθ ...`(1/cosθ = secθ)`
R.H.S
LHS = RHS
Hence proved.
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If 3 sin θ = 4 cos θ, then sec θ = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.