Advertisements
Advertisements
प्रश्न
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
उत्तर
tanθ = 1 ...(Given)
We know that, tan45° = 1
∴ θ = 45º
Now,
sinθ = sin 45º = `1/sqrt2`
cosθ = cos 45º = `1/sqrt2`
secθ = sec 45º = `sqrt2`
cosecθ = cosec 45º = `sqrt2`
∴ `(sinθ + cosθ)/(secθ + cosecθ)`
⇒ `(1/sqrt2 + 1/sqrt2)/(sqrt2 + sqrt2)`
⇒ `(2/sqrt2)/(2sqrt2)`
⇒ `cancel2/sqrt2 × 1/(cancel2sqrt2)`
⇒ `1/2`
∴ `(sinθ + cosθ)/(secθ + cosecθ) = 1/2`
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.