हिंदी

Prove the Following.Sec2θ + Cosec2θ = Sec2θ × Cosec2θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 

योग

उत्तर

\[\sec^2 \theta + {cosec}^2 \theta\]
\[ = \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}\]
\[ = \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta}\]
\[ = \frac{1}{\cos^2 \theta \sin^2 \theta}\]
\[ = \frac{1}{\cos^2 \theta} \times \frac{1}{\sin^2 \theta}\]
\[ = \sec^2 \theta  \text{ cosec }^2 \theta\]
shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 5.03 | पृष्ठ १३८

संबंधित प्रश्न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Choose the correct alternative: 
sinθ × cosecθ =?


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×