हिंदी

Prove the Following.(Secθ + Tanθ) (1 – Sinθ) = Cosθ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ

उत्तर

\[\left( \sec\theta + \tan\theta \right)\left( 1 - \sin\theta \right)\]

\[ = \left( \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} \right)\left( 1 - \sin\theta \right)\]

\[ = \left( \frac{1 + \sin\theta}{\cos\theta} \right)\left( 1 - \sin\theta \right)\]

\[ = \frac{1 - \sin^2 \theta}{\cos\theta}\]

\[ = \frac{\cos^2 \theta}{\cos\theta} \left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]

\[ = \cos\theta\]

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 5.02 | पृष्ठ १३८

संबंधित प्रश्न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×