Advertisements
Advertisements
प्रश्न
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
उत्तर
\[\left( \sec\theta + \tan\theta \right)\left( 1 - \sin\theta \right)\]
\[ = \left( \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} \right)\left( 1 - \sin\theta \right)\]
\[ = \left( \frac{1 + \sin\theta}{\cos\theta} \right)\left( 1 - \sin\theta \right)\]
\[ = \frac{1 - \sin^2 \theta}{\cos\theta}\]
\[ = \frac{\cos^2 \theta}{\cos\theta} \left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ = \cos\theta\]
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.