हिंदी

Choose the Correct Alternative Answer for the Following Question. Cosec 45° = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative answer for the following question.
cosec 45° =?

विकल्प

  • \[\frac{1}{2}\]

  • \[\sqrt{2}\] 

  • \[\frac{\sqrt{3}}{2}\] 

  • \[\frac{2}{\sqrt{3}}\] 

MCQ

उत्तर

\[cosec45^\circ = \sqrt{2}\]

Hence, the correct answer is \[\sqrt{2}\] .

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 1.2 | पृष्ठ १३८

संबंधित प्रश्न

If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

Choose the correct alternative: 
sinθ × cosecθ =?


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×