Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
sinθ × cosecθ =?
विकल्प
`sqrt(2)`
`1/2`
0
1
उत्तर
sinθ × cosecθ = 1
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ