हिंदी

Prave That: Sec θ + Tan θ = Cos θ 1 − Sin θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]
योग

उत्तर

L.H.S. = \[\sec\theta + \tan\theta\]

\[ = \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\]

\[ = \frac{1 + \sin\theta}{\cos\theta}\]

= \[\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}\]

= \[\frac{1^{2}-\sin^{2}\theta}{\cos\theta\bigl(1-\sin\theta\bigr)}\]

= \[\frac{1-\sin^{2}\theta}{\cos\theta\left(1-\sin\theta\right)}\]

= \[\frac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}\]           ...\[\begin{bmatrix}\because\sin^{2}\theta+\cos^{2}\theta=1\\\therefore1-\sin^{2}\theta=\cos^{2}\theta\end{bmatrix}\]

= \[\frac{\cos\theta}{1 - \sin\theta}\]

= R.H.S.

∴ \[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Practice Set 6.1 | Q 6.08 | पृष्ठ १३१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×