Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
L.H.S. = \[\sec\theta + \tan\theta\]
\[ = \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\]
\[ = \frac{1 + \sin\theta}{\cos\theta}\]
= \[\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}\]
= \[\frac{1^{2}-\sin^{2}\theta}{\cos\theta\bigl(1-\sin\theta\bigr)}\]
= \[\frac{1-\sin^{2}\theta}{\cos\theta\left(1-\sin\theta\right)}\]
= \[\frac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}\] ...\[\begin{bmatrix}\because\sin^{2}\theta+\cos^{2}\theta=1\\\therefore1-\sin^{2}\theta=\cos^{2}\theta\end{bmatrix}\]
= \[\frac{\cos\theta}{1 - \sin\theta}\]
= R.H.S.
∴ \[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]
APPEARS IN
संबंधित प्रश्न
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.