Advertisements
Advertisements
Question
Prove that:
Solution
L.H.S. = \[\sec\theta + \tan\theta\]
\[ = \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\]
\[ = \frac{1 + \sin\theta}{\cos\theta}\]
= \[\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}\]
= \[\frac{1^{2}-\sin^{2}\theta}{\cos\theta\bigl(1-\sin\theta\bigr)}\]
= \[\frac{1-\sin^{2}\theta}{\cos\theta\left(1-\sin\theta\right)}\]
= \[\frac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}\] ...\[\begin{bmatrix}\because\sin^{2}\theta+\cos^{2}\theta=1\\\therefore1-\sin^{2}\theta=\cos^{2}\theta\end{bmatrix}\]
= \[\frac{\cos\theta}{1 - \sin\theta}\]
= R.H.S.
∴ \[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]
APPEARS IN
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ