Advertisements
Advertisements
Question
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Solution
L.H.S. = sec6x – tan6x
L.H.S. = (sec2x)3 – tan6x
L.H.S. = (1 + tan2x)3 – tan6x ...[∵ 1 + tan2θ = sec2θ]
L.H.S. = 1 + 3tan2x + 3(tan2x)2 + (tan2x)3 – tan6x ...[∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
L.H.S. = 1 + 3tan2x(1 + tan2x) + tan6x – tan6x
L.H.S. = 1 + 3tan2x.sec2x ...[∵ 1 + tan2θ = sec2θ]
R.H.S. = 1 + 3sec2x.tan2x
L.H.S. = R.H.S.
∴ sec6x – tan6x = 1 + 3sec2x × tan2x
Hence proved.
APPEARS IN
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ