English

In δPqr, ∠P = 30°, ∠Q = 60°, ∠R = 90° And Pq = 12 Cm, Then Find Pr and Qr. - Geometry Mathematics 2

Advertisements
Advertisements

Question

In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.

Sum

Solution

From figure using the definition of sin

sin∠P = `"RQ"/"PQ"`

∴ sin30° = `"RQ"/12`

∴ `1/2 = "RQ"/12`

 RQ = 12/2 = 6 cm

 QR = 6 cm

sin∠Q = `"PR"/"PQ"`

∴ sin 60° = `"PR"/12`

∴ `sqrt(3)/2 = "PR"/12`

∴ PR = `(12sqrt(3))/2`

 PR = `6sqrt3` cm

Therefore PR = `6sqrt3` cm and QR = 6 cm

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
2016-2017 (July)

APPEARS IN

RELATED QUESTIONS

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×