Advertisements
Advertisements
Question
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Solution
secθ (1 – sinθ)(secθ + tanθ) = 1
LHS = secθ (1 – sinθ)(secθ + tanθ)
LHS = (secθ – secθ sinθ)(secθ + tanθ)
`"LHS" = (secθ – 1/cosθ × sinθ)(secθ + tanθ)`
`"LHS" = (secθ – sinθ/cosθ)(secθ + tanθ)`
`"LHS" = (secθ – tan θ)(secθ + tanθ) ...[(a + b)(a - b) = a^2 - b^2]`
`"LHS" = sec^2θ – tan^2θ ...{(1 + tan^2θ = sec^2θ),(∴ sec^2θ − tan^2θ = 1):}`
LHS = 1
RHS = 1
LHS = RHS
Hence proved.
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ