Advertisements
Advertisements
Question
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Solution
5secθ - 12cosecθ = 0
⇒ 5secθ = 12cosecθ
⇒ `5xx1/cosθ=12xx1/sinθ`
⇒ `5/cosθ = 12/sinθ`
⇒ `sinθ/cosθ = 12/5`
⇒ tanθ = `12/5 ...[tanθ=sinθ/cosθ]`
We have,
sec2θ = 1 + tan2θ
⇒ sec2θ = 1 + `(12/5)^2`
⇒ sec2θ = 1 + `144/25`
⇒ sec2θ = `169/25`
Taking square root on both sides,
`sqrt(sec^2θ)=sqrt(169/25)`
∴ secθ = `13/5`
Now,
cosθ = `1/secθ`
⇒ cosθ = `1/(13/5)`
⇒ cosθ = `5/13`
Also,
`sinθ/cosθ` = tanθ
⇒ sinθ = tanθ × cosθ
⇒ sinθ = `12/5 xx 5/13 = 12/13`
Thus, the values of secθ, cosθ and sinθ are `13/5, 5/13 and 12/13` respectively.
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.