English

Prove the Following.Sec2θ + Cosec2θ = Sec2θ × Cosec2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 

Sum

Solution

\[\sec^2 \theta + {cosec}^2 \theta\]
\[ = \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}\]
\[ = \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta}\]
\[ = \frac{1}{\cos^2 \theta \sin^2 \theta}\]
\[ = \frac{1}{\cos^2 \theta} \times \frac{1}{\sin^2 \theta}\]
\[ = \sec^2 \theta  \text{ cosec }^2 \theta\]
shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Problem Set 6 [Page 138]

APPEARS IN

RELATED QUESTIONS

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×