English

Prove the following. tan⁡θsec⁡θ+1=sec⁡θ−1tan⁡θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]

Sum

Solution

\[\frac{\tan\theta}{\sec\theta + 1}\]

\[ = \frac{\tan\theta}{\sec\theta + 1} \times \frac{\sec\theta - 1}{\sec\theta - 1}\]

\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\sec^2 \theta - 1}\]

\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\tan^2 \theta} \]       ...(1 + tan2θ = sec2θ)

\[ = \frac{\sec\theta - 1}{\tan\theta}\]

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Problem Set 6 [Page 138]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×