हिंदी

Prove the following. tan⁡θsec⁡θ+1=sec⁡θ−1tan⁡θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following.

tanθsecθ+1=secθ1tanθ

योग

उत्तर

tanθsecθ+1

=tanθsecθ+1×secθ1secθ1

=tanθ(secθ1)sec2θ1

=tanθ(secθ1)tan2θ       ...(1 + tan2θ = sec2θ)

=secθ1tanθ

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 5.08 | पृष्ठ १३८

संबंधित प्रश्न

If sinθ=725, find the values of cosθ and tan​θ.


If tanθ=34, find the values of sec​θ and cos​θ


Prove that:

1sinθ1+sinθ=secθtanθ

Prove that:

cotθ+tanθ=cosecθsecθ

Prove that: 1sec θ − tan θ=sec θ + tan θ


Prove that:
If tanθ+1tanθ=2, then show that tan2θ+1tan2θ=2


Prove that:

sec4A(1sin4A)2tan2A=1

Choose the correct alternative answer for the following question.
sin θ cosec θ= ?


Choose the correct alternative answer for the following question.

1 + tan2 θ  = ?


Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

11sinθ+11+sinθ=2sec2θ

Prove the following.

tan3θ1tanθ1=sec2θ+tanθ

Choose the correct alternative: 
sinθ × cosecθ =?


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and MAHA=75, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= (1-cosθ)(+) ......[secθ=1,cotθ=andtanθ=]

= (1-)(+ )

= ×1   ......[+=1=1-]

 =  

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.