हिंदी

If Sin θ = 7 25 , Find the Values of Cosθ and Tan​θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.

योग

उत्तर

We have, 
\[\sin^2 \theta + \cos^2 \theta = 1\]
\[ \Rightarrow \left( \frac{7}{25} \right)^2 + \cos^2 \theta = 1\]
\[ \Rightarrow \cos^2 \theta = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625}\]

\[ \Rightarrow \cos\theta = \sqrt{\frac{576}{625}} = \frac{24}{25}\]
Now,
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \tan\theta = \frac{\frac{7}{25}}{\frac{24}{25}}\]
\[ \Rightarrow \tan\theta = \frac{7}{24}\]
Thus, the values of cosθ and tanθ are \[\frac{24}{25}\] and \[\frac{7}{24}\], respectively.

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Practice Set 6.1 | Q 1 | पृष्ठ १३१

संबंधित प्रश्न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Choose the correct alternative: 
sinθ × cosecθ =?


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×