Advertisements
Advertisements
प्रश्न
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
उत्तर
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/bbcos θ) - cos θ) (bb cos θ/bb sin θ + bbsin θ/bb cos θ)` ......`[∵ sec θ = 1/bb cos θ, cot θ = bb cos θ/bb sin θ and tan θ = bb sin θ/bb cos θ]`
= `((1 - bb(cos^2 θ))/bbcos θ) ((bb(cos^2 θ) + bb(sin^2 θ))/(bb(sin^2θ) bbcos θ))`
= `bb(sin^2θ)/bb cos θ xx 1/(bbsin θ bbcos θ)` ......`[(∵ bb(sin^2θ) + bb(cos^2θ) = 1),(∴ bb(sin^2θ) = 1 - bb(cos^2θ))]`
= `bbsin θ/(bbcos θ bbcosθ)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
APPEARS IN
संबंधित प्रश्न
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.