हिंदी

Choose the Correct Alternative Answer for the Following Question. When We See at a Higher Level, from the Horizontal Line, Angle Formed is ........ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

विकल्प

  • angle of elevation.

  • angle of depression.

  • 0

  • straight angle.

MCQ

उत्तर

When we see at a higher level, from the horizontal line, angle formed is angle of elevation.

Hence, the correct answer is angle of elevation.

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 1.4 | पृष्ठ १३८

संबंधित प्रश्न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

Choose the correct alternative: 
sinθ × cosecθ =?


If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×