हिंदी

Prove the following: sec6x – tan6x = 1 + 3sec2x × tan2x - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x

योग

उत्तर

L.H.S. = sec6x – tan6x

L.H.S. = (sec2x)3 – tan6x

L.H.S. = (1 + tan2x)3 – tan6x          ...[∵ 1 + tan2θ = sec2θ]

L.H.S. = 1 + 3tan2x + 3(tan2x)2 + (tan2x)3 – tan6x            ...[∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]

L.H.S. = 1 + 3tan2x(1 + tan2x) + tan6x – tan6x

L.H.S. = 1 + 3tan2x.sec2x         ...[∵ 1 + tan2θ = sec2θ]

R.H.S. = 1 + 3sec2x.tan2x

L.H.S. = R.H.S.

∴ sec6x – tan6x = 1 + 3sec2x × tan2x

Hence proved.

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 5.07 | पृष्ठ १३८

संबंधित प्रश्न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×