हिंदी

Prove the Following. Tan 3 θ − 1 Tan θ − 1 = Sec 2 θ + Tan θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]
योग

उत्तर

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1}\]

\[ = \frac{\left( \tan\theta - 1 \right)\left( \tan^2 \theta + \tan\theta \times 1 + 1 \right)}{\tan\theta - 1} \left[ a^3 - b^3 = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right]\]

\[ = \tan^2 \theta + \tan\theta + 1\]   

\[ = \sec^2 \theta + \tan\theta \left( 1 + \tan^2 \theta = \sec^2 \theta \right)\]

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 5.09 | पृष्ठ १३८

संबंधित प्रश्न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×