Advertisements
Advertisements
प्रश्न
Prove that:
cos2θ (1 + tan2θ)
उत्तर
L.H.S. = cos2θ (1 + tan2θ)
= cos2θ × sec2θ ...[∵ 1 + tan2 θ = sec2 θ]
= \[\cos^{2}\theta\times\frac{1}{\cos^{2}\theta}\]
= 1
= R.H.S.
∴ cos2θ (1 + tan2θ) = 1
संबंधित प्रश्न
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.