Advertisements
Advertisements
Question
Prove that:
cos2θ (1 + tan2θ)
Solution
L.H.S. = cos2θ (1 + tan2θ)
= cos2θ × sec2θ ...[∵ 1 + tan2 θ = sec2 θ]
= \[\cos^{2}\theta\times\frac{1}{\cos^{2}\theta}\]
= 1
= R.H.S.
∴ cos2θ (1 + tan2θ) = 1
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that:
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.