Advertisements
Advertisements
Question
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Solution
Given: sinθ = `8/17`
We know that sin2θ + cos2θ = 1
∴ cos2θ = 1 - sin2θ
∴ cos θ = `sqrt(1 - sin^2θ)`
Using given
`cosθ = sqrt(1 - (8/17)^2) = sqrt(1 - 8^2/17^2)`
∴ cos θ = `sqrt((17^2 - 8^2)/17^2) = sqrt(289 - 64)/17`
∴ cos θ = `sqrt(225)/17 = 15/17`
∴ cos θ = `15/17`
APPEARS IN
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.