English

Prove that: sec θ − tan θsec θ + tan θ1sec θ − tan θ=sec θ + tan θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`

Sum

Solution

LHS = `1/"sec θ − tan θ"`

LHS = `1/"sec θ − tan θ" × "sec θ + tan θ"/"sec θ + tan θ"`

LHS = `"sec θ + tan θ"/((sec θ − tan θ)(sec θ + tan θ))`

LHS = `(sec θ + tan θ)/(sec^2θ − tan^2θ)   ...[(a + b)(a - b) = a^2 - b^2]`

LHS = `(sec θ + tan θ)/1                              ...{(1 + tan^2θ = sec^2θ),(∴ sec^2θ − tan^2θ = 1):}`

LHS = sec θ + tan θ

RHS = sec θ + tan θ

LHS = RHS

Hence proved.

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
Chapter 6 Trigonometry
Practice Set 6.1 | Q 6.06 | Page 131

RELATED QUESTIONS

If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
cosec 45° =?


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×