Advertisements
Advertisements
Question
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Solution
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/bbcos θ) - cos θ) (bb cos θ/bb sin θ + bbsin θ/bb cos θ)` ......`[∵ sec θ = 1/bb cos θ, cot θ = bb cos θ/bb sin θ and tan θ = bb sin θ/bb cos θ]`
= `((1 - bb(cos^2 θ))/bbcos θ) ((bb(cos^2 θ) + bb(sin^2 θ))/(bb(sin^2θ) bbcos θ))`
= `bb(sin^2θ)/bb cos θ xx 1/(bbsin θ bbcos θ)` ......`[(∵ bb(sin^2θ) + bb(cos^2θ) = 1),(∴ bb(sin^2θ) = 1 - bb(cos^2θ))]`
= `bbsin θ/(bbcos θ bbcosθ)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
APPEARS IN
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.