Advertisements
Advertisements
Question
Prove the following.
Solution
\[\frac{\tan^3 \theta - 1}{\tan\theta - 1}\]
\[ = \frac{\left( \tan\theta - 1 \right)\left( \tan^2 \theta + \tan\theta \times 1 + 1 \right)}{\tan\theta - 1} \left[ a^3 - b^3 = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right]\]
\[ = \tan^2 \theta + \tan\theta + 1\]
\[ = \sec^2 \theta + \tan\theta \left( 1 + \tan^2 \theta = \sec^2 \theta \right)\]
APPEARS IN
RELATED QUESTIONS
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.